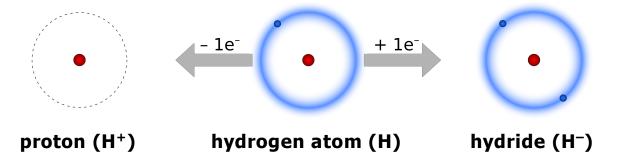
SHS	LEARNING	ACTIVIT
-----	----------	---------


Name:			Score/Mark:			
Grade and Section:			Date:			
Strand: 🗆 ST] ABM			TVL Track)	
Type of Activity	: □Cor	ncept Notes	□Skills: E	xercise/Drill	□ Illustratio	n
□Laboratory Report □Essay/Task Report □Other:						
Activity Title: 02-06.Electrons determine the charge of the atom or ion v03						
Learning Target: To calculate the charge of atoms and ions						
Authors/Refere	nces: Vic	tor Sojo				

We saw how a different number of protons makes the atom into a different element. But actually, **the number of protons does not normally change** in chemical reactions. Conversely, the **number of electrons does change** rather often, and **many chemical reactions involve changes in the numbers of electrons**.

Since protons (p^+) are positive and electrons (e^-) are negative, if their numbers are not the same the atom will have a **<u>charge</u>**. When this happens, we don't normally call it an atom anymore, but an "**ion**" instead.

Electrons are negative, so when a neutral atom gains one it becomes a **negatively charged ion**, also called an "**anion**" (pronounced an-eye-on). Losing electrons produces a **positively charged ion**, or "**cation**".

<u>Charge</u> is written in the **<u>top-right corner</u>** of the element's symbol.

For example, hydrogen can either lose or gain an electron. If it gains one, we end up with an anion called "hydride". If instead H loses an electron, we end up simply with a proton, so chemists normally call this the "proton ion" H⁺, or just a "proton". This can be a little confusing because of p⁺; so "carbon has six protons" means six p⁺ in its nucleus, not six H⁺ ions.

Question

Draw, including the electrons, the <u>lithium atom</u> and the <u>lithium ion</u>, $_{3}Li^{+}$.