

SHS LEARNING ACTIVITY

Name:			Score/Mark:		
Grade and Section:		Date:			
Strand:	STEM				TVL Track)
Type of Activity : Concept Notes Skills: Exercise/Drill Illustrati					Illustration
□ Laboratory	Report C	Essay/Task Rep	ort 🗆 Other:		
Activity Title: 02-07.Neutrons determine the isotope					v03
Learning Ta	arget: To	identify that iso	otopes are ty	pes of the sa	me element
Authors/Re	eferences	: Victor Sojo			

We've seen what happens when we change the number of protons (a different atom) and electrons (an ion). How about neutrons?

Changing the number of neutrons does not change the element, but it makes varieties of it called **isotopes**.

<u>Neutrons and protons</u> are sometimes called <u>nucleons</u> (can you guess why?). They have roughly the <u>same mass</u>, which is much larger than that of the electron. For this reason, and to distinguish between isotopes of the same element, the <u>number of nucleons</u> is sometimes written in the <u>top-left corner</u> of the element's symbol.

Hydrogen has three isotopes: protium ¹H, deuterium ²H, and tritium ³H. The first one has no neutrons, the second has one, and the third has two:

Exercise

Carbon also has three natural isotopes, called simply carbon-12 (12 C), carbon-13 (13 C), and carbon-14 (14 C). The most common is 12 C, but everything with carbon (including us!) normally has a bit of the other two. Choose one of the three carbon isotopes and draw its **<u>nucleus</u>**.