

SHS LEARNING ACTIVITY

Name:	Score/Mark:
Grade and Section:	Date:
Strand: STEM ABM	
Laboratory Report Essay/Task Report	t □ Other:
Activity Title: 03-05.Valence electrons	and the octet rule v03
Learning Target: To identify the reacting electrons of an elements	
Authors/References: Victor Sojo	
Elements can have many electrons. For example, neutral silver has 47, and	
neutral lead has 82. Not all of these are involved in chemical reactions. In	
fact, only the outer electrons participate in chemical reactions.	
These are called the valence electro	ns , underlined as follows:
$_{1}$ H: <u>1s¹</u> $_{9}$ F:1s ² <u>2s²2p⁵</u> $_{20}$ Ca:1s ² 2s ² 2	$p^{6}3s^{2}3p^{6}4s^{2}$ $_{2}He: 1s^{2}$ $_{8}O: 1s^{2}2s^{2}2p^{4}$
When elements react, they often	gain, lose, or share electrons until
they end up with a s^2p^6 configuration. This is called a full or "closed" shell.	
The noble gases (He, Ne, Ar, Kr, Xe) do not tend to react at all. This is	
because they already have a closed shell, which is very stable. For this	
reason, some like to say that <u>at</u>	oms tend to get the electronic
configuration of the closest noble gas.	
Calcium, for example, can lose its two valence electrons and form the ion	
calcium, $Ca^{2+}:1s^22s^22p^63s^23p^6$, which has the configuration of argon (₁₈ Ar).	
Fluorine would instead tend to gain one electron and end up as the ion	
fluoride with the configuration of $_{10}$ Ne, F ⁻ :1s ² 2s ² 2p ⁶ . Unsurprisingly, calcium	
reacts with fluorine, forming calcium fluoride: $Ca + F_2 \longrightarrow CaF_2$	
Here, two electrons were transferred from calcium, one to each fluorine.	
But sometimes neither element would benefit from losing electrons, so they	
<u>share</u> . Hydrogen would welcome one electron and end up with a helium-like 1s ² ,	
whereas oxygen would prefer two and	d have neon's

1s²2s²2p⁶. The solution? Two hydrogen atoms can each share one electron with one oxygen atom.

Lewis structure of H_2O

In this **Lewis structure**, we normally end up with eight electrons around each atom (except H, which ends up with 2). This is called the **octet rule**.

Exercise: Draw the Lewis structures of H₂, O₂ and CO₂.