	SHS LEARNING ACTIVITY	CHEM1-05-02
Name:	ame: Score/Mark:	

Grade and Section:	Date:				
Strand: STEM AB	M 🗆 HUMSS 🗆 ICT (<i>TVL Track</i>)				
Type of Activity : Concept	Notes Skills: Exercise/Drill Illustration				
□ Laboratory Report □ Essay/T	ask Report 🗆 Other:				
Activity Title: 05-02.Commor	cations and anions v03				
Learning Target: To familiari	ze with the most typical inorganic ions				
Authors/References: Victor S ed., pp.	Sojo, Jerome Sadudaquil / Chang, Chemistry 10th 60–61; Petrucci, Chemistry 10th ed., pp. 88-91				
CATIONS WITH A UNIQUE	CHARGE simply receive the name of their				
element, such as the silver ior	n, Ag ⁺ . Here are the most significant ones:				
	e periodic table (Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺), Ag ⁺ .				
Only 2+: All in Group 2 (Be ²⁺	⁻ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺), Cd ²⁺ , Zn ²⁺ .				
Only 3+: Al ³⁺ .					

CATIONS WITH TWO TYPICAL CHARGES

Here are some useful pairs to remember:

Cu ⁺	copper(I)	cuprous	Au ⁺	gold(I)	aurous
Cu ²⁺	copper(II)	cupric	Au ³⁺	gold(III)	auric
Hg_{2}^{2+}	mercury(I)	mercurous	Fe ²⁺	iron(II)	ferrous
Hg ²⁺	mercury(II)	mercuric	Fe ³⁺	iron(III)	ferric
Sn ²⁺	tin(II)	stannous	Co ²⁺	cobalt(II)	cobaltous
Sn ⁴⁺	tin(IV)	stannic	Co ³⁺	cobalt(III)	cobaltic
Pb ²⁺	lead(II)	plumbous	Cr ²⁺	chromium(II)	chromous
Pb ⁴⁺	lead(IV)	plumbic	Cr ³⁺	chromium(III)	chromic

ANIONS are not as easy to classify, so let's just group them loosely:

F⁻	fluoride	OH⁻	hydroxide	N ^{3–}	nitride
Cl⁻	chloride	O ²⁻	oxide	NO_2^-	nitrite
Br [−]	bromide	O_2^{2-}	peroxide	NO_3^-	nitrate
I-	iodide	S ²⁻	sulfide	MnO₄ [−]	permanganate
CIO-	hypochlorite	SO ₃ ²⁻	sulfite	CrO ₄ ²⁻	chromate
CIO_2^-	chlorite	SO4 ²⁻	sulfate	$Cr_2O_7^{2-}$	dichromate
CIO ₃ ⁻	chlorate	HSO ₃ [−]	bisulfite	CO ₃ ^{2–}	carbonate
CIO_4^-	perchlorate	HSO_4^-	bisulfate	HCO ₃ ⁻	bicarbonate
PO4 ³⁻	phosphate	HPO ₄ ²⁻	hydrogen phosphate	$H_2PO_4^-$	dihydrogen phosphate

SOME STRANGE IONS

Hydrogen can be either a cation (H^+ , proton) or an anion (H^- , hydride). NH₄⁺, ammonium, is the only cation discussed here that is not a metal. We saw the peroxide O_2^{2-} and mercurous Hg_2^{2+} ions above. **Do not** "simplify" them to Θ^- and Hg^+ ! This is incorrect! They must stay as pairs. **Exercise:** can you predict the formula of the ion iodate? Hint: Group 17.