
So far, we have just been naming and describing elements and compounds. But chemistry is the science of changing substances, not static matter. When a substance changes into another, we call this a chemical reaction:

Here, hydrogen and oxygen (the reactants or reagents) reacted, forming water (the product). Count the atoms; you'll see that the numbers for each element are exactly the same before and after: the atoms only rearrange, their numbers remain the same in chemical reactions (nuclear reactions are an exception, but we won't study them here). You'll also notice that some of the H_{2} didn't have any O_{2} to react with, so it was left unreacted.

These simple relations have allowed chemists to create very simple mathematical expressions to easily calculate quantities in reactions:

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O} \quad \text { unbalanced! }
$$

Like all good mathematical equalities, these chemical equations must be balanced (what's on the left-hand side must be equal to what's on the right-hand side). Let's count the atoms again. One oxygen seems to have disappeared! That cannot be, so let's fix it by multiplying water by 2 :

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow \mathbf{2} \mathbf{H}_{2} \mathrm{O}
$$

unbalanced!
That helped, but now we messed up the hydrogen. It's easy to fix it:

$$
\mathbf{2} \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O} \quad \text { balanced }(:)
$$

We read this as: "two molecules of hydrogen react with one molecule of oxygen and produce (or yield) two molecules of water".

Exercise: balance the equation for the formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ from Al and O_{2}.

