SHS LEARNING ACTIVITY				CHEM1-06-01	
Name:Score/Mark:				k:	
Grade and Section:			Date:		
Strand: 🗆 S				TVL Track)	
Type of Activity : Concept Notes Skills: Exercise/Drill Illustration					
□Laboratory Report □Essay/Task Report □Other:					
Activity Title: 06-01. Stoichiometry - Reactions and equations v03					
Learning Target: To visualize reactions and start balancing equations					
Authors/References: Victor Sojo					

So far, we have just been naming and describing elements and compounds. But chemistry is the science of **<u>changing substances</u>**, not static matter. When a substance changes into another, we call this a **<u>chemical reaction</u>**:

Here, hydrogen and oxygen (the <u>reactants</u> or <u>reagents</u>) <u>reacted</u>, forming water (the <u>product</u>). <u>Count the atoms</u>; you'll see that the numbers for each element are exactly the same before and after: the atoms only rearrange, their numbers remain the same in chemical reactions (nuclear reactions are an exception, but we won't study them here). You'll also notice that some of the H₂ didn't have any O₂ to react with, so it was left unreacted.

These simple relations have allowed chemists to create very simple mathematical expressions to easily calculate quantities in reactions:

$$H_2 + O_2 \longrightarrow H_2O$$
 unbalanced!

Like all good mathematical equalities, these <u>chemical equations</u> must be <u>balanced</u> (what's on the left-hand side must be <u>equal</u> to what's on the right-hand side). Let's count the atoms again. One oxygen seems to have disappeared! That cannot be, so let's fix it by multiplying water by 2:

 $H_2 + O_2 \longrightarrow 2H_2O$ unbalanced!

That helped, but now we messed up the hydrogen. It's easy to fix it:

$$\mathbf{2}H_2 + O_2 \longrightarrow \mathbf{2}H_2O \qquad \qquad \text{balanced} \ \textcircled{\odot}$$

We read this as: "two molecules of hydrogen react with one molecule of oxygen and produce (or yield) two molecules of water".

Exercise: balance the equation for the formation of Al_2O_3 from Al and O_2 .