	S	HS LEARN		Ινιτγ	CHEM1-06-02	
Name:				Score/Mark:		
Grade and Section:			Date:			
Strand: 🗆 S	TEM				TVL Track)	
Type of Activity	/: □(Concept Notes	□ Skills:	Exercise/Drill	Illustration	
□Laboratory Report □Essay/Task Report □Other:						
Activity Title: 06-02.Balancing equations					v02	
Learning Target: To practice balancing equations						
Authors References: Victor Sojo sky-web: bit.ly/2C1mltt Wikipedia: Hydrazine; Nitrogen pentoxide.						

If a solution to the balancing is not obvious, a good trick is to follow this order: 1)Metals, 2)Nonmetals (except H and O), 3)Hydrogen, and lastly 4)Oxygen. It doesn't always work, but often it does. Another trick if the previous fails is to leave a pure element (such as Cl_2 , O_2 , H_2 or F_2) for the end, since multiplying it won't affect any other element.

Practice makes perfect! Let's balance a few equations (remember to always make sure that the number of atoms of each element is the same on both sides! Count again after you finish balancing!):

Na + Cl₂ \longrightarrow NaCl Zn + HCl \longrightarrow ZnCl₂ + H₂

 $C_2H_5OH + O_2 \longrightarrow CO_2 + H_2O$

 $AI_2(CO_3)_3 + H_3PO_4 \longrightarrow AIPO_4 + CO_2 + H_2O$

 $C_6H_{12}O_6 \ + \ O_2 \ \longrightarrow \ CO_2 \ + \ H_2O$

 $FeCI_3 + NH_3 + H_2O \longrightarrow Fe(OH)_3 + NH_4CI$

 $NH_3 \ + \ H_2O_2 \ \rightarrow \ N_2H_4 \ + \ H_2O$

 $S_8 + F_2 \longrightarrow SF_6$

 $P_4O_{10} \ + \ HNO_3 \longrightarrow \ H_3PO_4 \ + \ N_2O_5$

 $C_4H_{10} \ + \ O_2 \ \longrightarrow \ CO_2 \ + \ H_2O$

 $(H_2N)_2CO + NaOCI + NaOH \longrightarrow N_2H_4 + H_2O + NaCI + Na_2CO_3$