

Since atoms are so incredibly small, we need some way to count them easily. But what number to use? A dozen? Still too few... Someone had a simple idea: since hydrogen is the first element, and we normally weigh things in grams, let's just define 1 mol ("one mole") as the number of atoms of hydrogen in 1 g of pure ${ }^{1} \mathrm{H}$ hydrogen. That was a great idea, but hydrogen is volatile and flammable and difficult to purify, so we now define mole as the number of carbon atoms in 12 g of pure ${ }^{12} \mathrm{C}$ (without any ${ }^{13} \mathrm{C}$ or ${ }^{14} \mathrm{C}$). This value, called Avogadro's number (in honor of Italian chemist Amedeo Avogadro), is approximately $\underline{\mathbf{6 . 0 2} \cdot \mathbf{1 0}^{\mathbf{2 3}}}$.

So, 1 mol of ${ }^{12} \mathrm{C}$ weighs exactly 12 g . But since there's a bit of ${ }^{13} \mathrm{C}$ and ${ }^{14} \mathrm{C}$ in typical carbon, 1 mol of normal pure carbon actually weighs 12.011 g .

This is called the molar mass of carbon. The standard symbol is M, but we will use that later for "molarity" (the concentration of a solution), so here we will use the Greek letter μ ("mu") instead.

We can easily calculate the molar mass of compounds, such as CO_{2} :

$$
\begin{aligned}
\mu_{\mathrm{CO}_{2}} & =\mu_{\mathrm{C}} \cdot 1+\mu_{\mathrm{O}} \cdot 2 \\
& =12.011 \mathrm{~g} / \mathrm{mol}+2 \cdot 15.999 \mathrm{~g} / \mathrm{mol} \\
& =44.009 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Since most molar masses are so close to integers, we often round them (12,16 , and 44 in the calculation above). But some are too far to round up or down; for example, $\mu_{\mathrm{Cl}}=35.45 \mathrm{~g} / \mathrm{mol}$, which shouldn't really be rounded to either 35 or 36 , so we just leave it as is or round only to $35.5 \mathrm{~g} / \mathrm{mol}$.

If you've heard the term "molecular weight" before, we won't use it here, firstly because it's not a weight (it's a mass), and secondly because it isn't always a molecule, as in some of the examples below.
Exercise. Calculate the molar masses of: $\mathrm{H}_{2} \mathrm{O}, \mathrm{NaCl},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.

