

SHS LEARNING ACTIVITY Research2-05-01

Name: Score/Mark:
Grade and Section: Date:
Strand: o STEM o ABM o HUMSS o ICT (TVL Track)
Type of Activity : o Concept Notes o Skills: Exercise/Drill o Illustration
o Laboratory Report o Essay/Task Report o Other:

This content is released under a CC-BY-NC-SA license. In short, this means you can use and modify it freely as long as you: do NOT sell what you create, you share it under the
same conditions, and you credit us by linking to our website eduversum.org/cvif. Visit the website for additional information and to contact us with comments or suggestions.

Activity Title: 05-01.What are computers? v05
Learning Target: To describe that computers are not magic

Authors/References: H. Shim, V. Sojo / Wikipedia: Computer; Abacus
Exploring Computer Science Teacher Version v7.0

 What are computers? Computers have become such an integral part
of our everyday lives that we may not even know how to answer this simple
question. However, computers are not magic, they are simply big
calculators that do exactly what they are told.
 The word “computer” used to mean a person who carried out
computations – however, towards the 20th century, it started meaning a
machine that carries out computations. For thousands of years, human
civilizations have invented various devices to aid computation, such as the
abacus, which has been around since 2700 BCE. In the early 19th century
the first computing device was developed that had the input of programs
and data (through punched cards, stiff paper containing data), an arithmetic
logic unit, flow control, integrated memory, visual output and sound output
– like our modern general-purpose computer!
 The first fully automatic digital computer (the Z3) was developed in
1941. This was very close to modern machines, using a binary system
(expressed as series of 0 and 1) instead of a decimal system. However, this
computer occupied an entire room, and it was less powerful than a cheap
modern wristwatch (a simple addition took 0.8 seconds, and multiplication
took over 3 seconds!). The concept of a modern computer that is capable of
executing any computable algorithms (instructions) was proposed by Alan
Turing in 1936. In 1951, the world’s first commercial general-purpose
computer (the Ferranti Mark 1) was available, and ran the world’s first
office computer job. Today we have computers everywhere, from laptops,
to desktops, to pocket calculators, to smartphones and even planes!

Exercises:

1. How would you define computing or computer science? (1 sentence)
2. Give two or three examples of computers from your daily life.

SHS LEARNING ACTIVITY Research2-05-02

Name: Score/Mark:
Grade and Section: Date:
Strand: o STEM o ABM o HUMSS o ICT (TVL Track)
Type of Activity : o Concept Notes o Skills: Exercise/Drill o Illustration
o Laboratory Report o Essay/Task Report o Other:

This content is released under a CC-BY-NC-SA license. In short, this means you can use and modify it freely as long as you: do NOT sell what you create, you share it under the
same conditions, and you credit us by linking to our website eduversum.org/cvif. Visit the website for additional information and to contact us with comments or suggestions.

Activity Title: 05-02.Programming languages v04
Learning Target: To define programming languages as communication tools

Authors/References: H. Shim, V. Sojo / Wikipedia: Programming language;
A.B. Downey, Think Python. Version 2.0.17

Computers just do what they are told, but since they use binary code

(series of 0s and 1s), we need a way to communicate with them. Program-
ming languages are communication tools that allow us, the programmers, to
give instructions for the computer to follow. The history of programming
languages is bound to the history of computers–e.g. FORTRAN, invented in
1954 at IBM, was one of the first high-level programming languages.

Nowadays, there is a wide range of programming languages available,
including C, C++, Java, Python, JavaScript and R. They are all different in
syntax (form) and semantics (meaning). Learning a programming language
takes a lot of time and effort (just like learning English, Spanish, Mandarin
or Visayan!) and we should choose according to our purpose. In research, R
and Python are among the most frequently used, Python due to its ease for
data manipulation, and R due to its statistical power. We will focus on
Python for now. Imagine you want to ask your computer to analyze your
data, which has 1 million entries. You can do this very quickly in Python!

Let’s start with some basics about computers and programming:

Machine code: Binary sequences that the computer can understand.
High-level language: A programming language (like Python) that is
designed to be easy for humans to read and write, and then translated
(“compiled” or “interpreted”) into machine code for the computer to run.
Compile: To translate a program written in a high-level language into
machine code, all at once, in preparation for later execution.
Interpret: Executing a program in a high-level language by reading and
translating it one line at a time. Python is interpreted, not compiled.
Algorithm: A general process for solving a category of problems.
Program: A full set of instructions for the computer to perform.
Script: A program with relatively simple instructions, in a file, typically in
an interpreted language (run by the computer line by line).
Bug: An error in a program.
Debugging: The process of finding and removing a programming error.
Syntax error: An error in a program that makes it impossible for the
computer to interpret (it doesn’t understand what we meant, so it stops).
Semantic error: An error in a program that makes the computer do
something other than what we intended (we gave it the wrong command).

SHS LEARNING ACTIVITY Research2-05-03

Name: Score/Mark:
Grade and Section: Date:
Strand: o STEM o ABM o HUMSS o ICT (TVL Track)
Type of Activity : o Concept Notes o Skills: Exercise/Drill o Illustration
o Laboratory Report o Essay/Task Report o Other:

This content is released under a CC-BY-NC-SA license. In short, this means you can use and modify it freely as long as you: do NOT sell what you create, you share it under the
same conditions, and you credit us by linking to our website eduversum.org/cvif. Visit the website for additional information and to contact us with comments or suggestions.

Activity Title: 05-03.“Hello World!”. Our first script. v09
Learning Target: To start coding in Python
Authors|References: H. Shim, V. Sojo | docs.python.org/3/tutorial

 Remember that we learned how computers just do what they are told?
Let’s prove that by writing our first Python script:
print("Hello World!")
And that’s it! Run the script. The computer will do exactly what we told it
to do: it will print "Hello World!". Well done, we are now coders!
We also saw that computers are big calculators. Let’s do some simple math:
the following code should produce 11:
9 + 5 - 3
The hash character # is used to write comments for ourselves and our
fellow coders. The computer will just ignore anything after a #.
If we run the last script we’ll see that nothing seems to happen. What’s
going on? The computer actually did calculate the result (11), but we didn’t
tell it to do anything with this result, so it just ran the script and exited
(finished) without giving us any feedback (because we didn’t ask it to).
Remember: computers do just what programmers tell them to do.

Mathematical and logical operators:
Addition a + b Equality (is a equal to b?) a == b
Subtraction a - b Inequality (≠) a != b
Multiplication (a×b) a * b Greater than a > b
Division (real num.) a / b Greater than or equal to (≥) a >= b
Division (integer) a // b Not (a is not true) not a
Int division remainder a % b And (are both a and b true?) a and b
Powers (ab) a ** b Or (is either a or b true?) a or b

Note: in Python 2, "/" gives integer division. We are using Python 3 here.

EXERCISE: Get the computer to show the results of the computation above
and the following ones, but predict the result before you run the script!
 6*4 , 6/4 , 6//4 , 6%4 , (50–5*6)/4
Optional: try print(2+3) versus print("2"+"3") versus print("2+3")

SHS LEARNING ACTIVITY Research2-05-04

Name: Score/Mark:
Grade and Section: Date:
Strand: o STEM o ABM o HUMSS o ICT (TVL Track)
Type of Activity : o Concept Notes o Skills: Exercise/Drill o Illustration
o Laboratory Report o Essay/Task Report o Other:

This content is released under a CC-BY-NC-SA license. In short, this means you can use and modify it freely as long as you: do NOT sell what you create, you share it under the
same conditions, and you credit us by linking to our website eduversum.org/cvif. Visit the website for additional information and to contact us with comments or suggestions.

Activity Title: 05-04.Variables v07
Learning Target: To use variables in python
Authors|References: H. Shim, V. Sojo | docs.python.org/3/tutorial

In mathematics, variables are symbols that represent values. Similarly, we
can use the equals sign “=” to assign a value to a variable in Python.
Exercise. Predict the output of the following script, then write and run it:
width = 10
length = 2
height = 5
volume = width * length * height

You can probably guess that, like before, the computer won’t show us any
output (because we didn’t tell it to). Add a line to tell it to print the volume.
We can also reassign variables. That is, we can change their value:

x = 4
print(x) # should give 4
x = 5
print(x) # should give 5. Now try x = x*2, x = x*x, x = x
...and x += 1
Note: the . . . mean that something should be written on the previous line!

As we saw before, Python can also manipulate text, known in computing
as character strings. Try this:
s = "First line.\nSecond line." # "\n" means newline
print(s)
We can even do some funny things, like multiplying strings:
s = "sigi,"
print(3*s + "I like" + 2*" halo")
Text is called a “character string” because that’s what it is: a string of
characters. This means we can actually print specific letters, using brackets:
s = "Guindulman"
print(s[0]) # first letter of the string "Guindulman"
print(s[-3]) # third letter from the end
print(s[1:3]) # a "slice" or piece of a string
Note that, like most programming languages, Python starts counting at zero.

SHS LEARNING ACTIVITY Research2-05-05

Name: Score/Mark:
Grade and Section: Date:
Strand: o STEM o ABM o HUMSS o ICT (TVL Track)
Type of Activity : o Concept Notes o Skills: Exercise/Drill o Illustration
o Laboratory Report o Essay/Task Report o Other:

This content is released under a CC-BY-NC-SA license. In short, this means you can use and modify it freely as long as you: do NOT sell what you create, you share it under the
same conditions, and you credit us by linking to our website eduversum.org/cvif. Visit the website for additional information and to contact us with comments or suggestions.

Activity Title: 05-05.Data types and data structures v08
Learning Target: To define data types and use data structures in python
Authors|References: H. Shim, V. Sojo | docs.python.org/3/tutorial

Previously, we learnt about the growing importance of computational
analysis, given the ever-increasing amounts of data in most fields. Python is
known for its ease for data processing, and a crucial step for this is storing
the data. First, we need to remember that there are different types of
data, such as integer (1, 27, -4, 395), float (real numbers with decimals,
like 1.0, 2.17908) and strings (like “some text”, “1”). Now, we can start
organizing our data into data structures, such as lists and dictionaries.
Lists (also called arrays) are ordered successions of values. The position of
an item in a list is called its index, and it always starts at zero.
squares = [1, 4, 9, 16, 25, 36, 49]
print(squares) # prints everything in the list
print(squares[0]) # the FIRST item, starting at zero!
print(squares[3]) # the FOURTH item, 16
print(squares[-2]) # second item from the end, 36
Lists can be “sliced” (or cut into fragments), just like we did with strings:
print(squares[2:4])
Note that this actually leaves out the last item.
print(squares[-4:]) # prints until the end
Lists can also be extended or concatenated (joined with other lists):
squares + [64, 81] # let’s extend the list
print(squares) # it didn’t change! Why?
That didn’t really work! We forgot that we need to reassign the variable:
squares = squares + [64, 81, 10] # try printing again
You can also change the contents of lists. Let’s correct the mistake at the
end of the previous command:
squares[-1] = 100 # always print to check if it worked
Dictionaries are similar to lists, but they are unordered. Instead, they
work with key-value pairs, where the value can be accessed with the key:
population = {'Jagna': 33892, 'Manila': 12877253}
print(population)
print(population['Jagna'])
population['Berlin'] = 6004857 # this adds a new pair

SHS LEARNING ACTIVITY Research2-05-06

Name: Score/Mark:
Grade and Section: Date:
Strand: o STEM o ABM o HUMSS o ICT (TVL Track)
Type of Activity : o Concept Notes o Skills: Exercise/Drill o Illustration
o Laboratory Report o Essay/Task Report o Other:

This content is released under a CC-BY-NC-SA license. In short, this means you can use and modify it freely as long as you: do NOT sell what you create, you share it under the
same conditions, and you credit us by linking to our website eduversum.org/cvif. Visit the website for additional information and to contact us with comments or suggestions.

Activity Title: 05-06.Control statements: if–elif–else v08
Learning Target: To start programming by using control flows in Python
Authors|References: H. Shim, V. Sojo | docs.python.org/3/tutorial

 Finally, we can take our first steps in actual programming. The beauty
and power of programming is that we can use control statements to
decide whether or not to execute some tasks, and to repeat other tasks in a
sequential manner. We will focus on two types of control statements:
Control type Keywords
Decision making if, elif, else
Looping/iteration/repetition while
Looping/iteration/repetition for

The simplest control statement is the "if" decision block:
x = 1 # try changing this to 1+1, 2, -2, and run again
if x==2: # note the double equals for comparisons!
⇥ print("x equals two")
⇥ print("We’re still inside the if")
print("We’re outside the if")
IMPORTANT: Python requires that we use proper indentation. This
means that every statement inside the “if” block has to start with the same
spacing before it. Let’s agree to use 1 TAB always (TAB is the big key with
long arrows, at the top-left of most keyboards, symbolized by ⇥ above).

But what if we want to do something when the condition is not true?

x = 5 # change to -5, 5-5, 5*0, and others
if x>0:
⇥ print("x is positive")
else:
⇥ print("I don’t know whether x is zero or negative!")
EXERCISE: There is also an "elif" statement, which is short for else-if.

We use these to test additional conditions between the opening if and the

closing else. Modify the script adding an elif between the if and the else

to test whether x < 0, so that we can find out if any given x is positive,
negative, or zero. Test with various values of x as above.

SHS LEARNING ACTIVITY Research2-05-07

Name: Score/Mark:
Grade and Section: Date:
Strand: o STEM o ABM o HUMSS o ICT (TVL Track)
Type of Activity : o Concept Notes o Skills: Exercise/Drill o Illustration
o Laboratory Report o Essay/Task Report o Other:

This content is released under a CC-BY-NC-SA license. In short, this means you can use and modify it freely as long as you: do NOT sell what you create, you share it under the
same conditions, and you credit us by linking to our website eduversum.org/cvif. Visit the website for additional information and to contact us with comments or suggestions.

Activity Title: 05-07.Iterative (repetitive) statements (“loops”) v06
Learning Target: To use while and for loops to repeat tasks in Python
Authors|References: H. Shim, V. Sojo | docs.python.org/3/tutorial

One of the greatest things about computers is that they can repeat tasks
millions of times without complaining. We use two main loops to repeat
tasks: for and while.

for loops execute a specific number of times, defined within a “range”:
for i in range(0, 5):
⇥ print("We are printing this line over and over again!")

Printing the same thing over and over is a bit boring. It would be more
interesting to use the number i itself to do some calculations:

for i in range(0, 5):
⇥ print("The square of "+ str(i) + " is " + str(i*i))

Note that we had to tell Python to convert "i" to a string by using the
inbuilt function str(). Otherwise, print() gets confused because we are

giving it different data types. We will learn about functions soon.
for loops are very powerful. They can iterate (loop) over a list too:

squares = [1, 4, 9, 16, 25]
for square in squares:
⇥ print(square)

while loops execute as long as a given condition remains true. We can
use operators such as >, <=, >=, ==, !=, or variables with a value of False
or True (also, 0 counts as “False”, and any other number is “True”).

a = 0
while a < 10:
⇥ print(a)
⇥ a += 1 # it’s the same as a=a+1, just a bit quicker

Because while loops run while a condition is true, they can be dangerous:
what if we give it a condition that is always true, such as while 1<2:? We
would send our obedient computer into an infinite loop! Let’s be careful!

SHS LEARNING ACTIVITY Research2-05-08

Name: Score/Mark:
Grade and Section: Date:
Strand: o STEM o ABM o HUMSS o ICT (TVL Track)
Type of Activity : o Concept Notes o Skills: Exercise/Drill o Illustration
o Laboratory Report o Essay/Task Report o Other:

This content is released under a CC-BY-NC-SA license. In short, this means you can use and modify it freely as long as you: do NOT sell what you create, you share it under the
same conditions, and you credit us by linking to our website eduversum.org/cvif. Visit the website for additional information and to contact us with comments or suggestions.

Activity Title: 05-08.Functions v05
Learning Target: To produce reusable code by creating functions
Authors|References: H. Shim, V. Sojo | docs.python.org/3/tutorial

 In programming, a function is a reusable piece of code that does a
particular job. A function has a specified name by which it can be called.
For example, we’ve already seen the print(x) function. Here, “x” is the

argument of the function, i.e. the input that we give it. “print” is built into
Python, but the great thing is that we can define our own functions (using
“def”), and we can also have them return a result if we want to:

def function_name(arguments):
⇥ [operations and calculations in the function]
⇥ return [expression or value] # optional

Note: we don’t have to return anything, and arguments are also optional.
Let’s write a function to get the largest of two numbers:

def max_of_two_nums(num1, num2):
⇥ maximum = num1 # this may not be true, we will test it
⇥ if num2 > num1: # this is the test
⇥ ⇥ maximum = num2 # note the double TAB!
⇥ return maximum
Now we can run this function, e.g.: print(max_of_two_nums(9, -17))

Exercise: Create a function max_of_list(the_list) that returns the

maximum from a list of numbers, such as nums = [1, 45, 3.9, -7, 8].

This is a little trickier, because we have to go over the whole list. Complete
the code below:

def max_of_list(the_list):
⇥ maximum = the_list[0] # we will test if this isn’t true
⇥ for num in the_list: # go over each number in the list
⇥	 ⇥ # TO DO: test if this num is larger than maximum
⇥	 ⇥ ⇥ # TO DO: change maximum to the current num
⇥ # TO DO: we need to return the maximum
Write all the code lines that start with “…TO DO:”, and test the function.

SHS LEARNING ACTIVITY Research2-05-09

Name: Score/Mark:
Grade and Section: Date:
Strand: o STEM o ABM o HUMSS o ICT (TVL Track)
Type of Activity : o Concept Notes o Skills: Exercise/Drill o Illustration
o Laboratory Report o Essay/Task Report o Other:

This content is released under a CC-BY-NC-SA license. In short, this means you can use and modify it freely as long as you: do NOT sell what you create, you share it under the
same conditions, and you credit us by linking to our website eduversum.org/cvif. Visit the website for additional information and to contact us with comments or suggestions.

Activity Title: 05-09.Input v09
Learning Target: To read and use input from the user and from files
Authors|References: H. Shim, V. Sojo | docs.python.org/3/tutorial

So far, we’ve been defining all the data directly inside the script.
However, we can also get data from the user of our programs:

name = input("Please enter your name: ")
age = input("Now please enter your age: ")
print("Thank you, " + name + ". I hope you enjoyed ...
...your " + age + "th birthday!")
#print("Next year you'll be " + (age+1) + "years old.")

The last line is commented out because it has an error. Can you spot it?
More often, we want to read a large amount of data for analysis. Let’s

just load a small file (data.csv) that should be in the computers at school:

with open("data.csv") as datafile: # open the file
⇥ for line in datafile: # and read it line by line
⇥ ⇥ print(line)
Open the file in Notepad. Afterwards, open it in Excel. It’s actually a table
of values! We can analyze it by splitting it at the commas:

with open('data.csv', 'r') as datafile: # open the file
⇥ for line in datafile: # and read it line by line
⇥ ⇥ fields = line.split(',') # split it at the commas
⇥ ⇥ province = fields[0]
⇥ ⇥ capital = fields[1]
Now go on and play! Assign fields to variables. Try printing each province
with its capital, such as, “The capital of Bohol is Tagbilaran”.

The 'r' tells Python to open the file in reading mode (to protect it so that
we don’t destroy the data). This is because we can also write ('w') to files:

out_text = "some text\nto send out\nto a file\n"
with open('output.txt', 'w') as out_file:
 out_file.write(out_text) # now open the file to check
There is also an 'a' mode for appending to a file. Exercise: try it out!

SHS LEARNING ACTIVITY Research2-05-010

Name: Score/Mark:
Grade and Section: Date:
Strand: o STEM o ABM o HUMSS o ICT (TVL Track)
Type of Activity : o Concept Notes o Skills: Exercise/Drill o Illustration
o Laboratory Report o Essay/Task Report o Other:

This content is released under a CC-BY-NC-SA license. In short, this means you can use and modify it freely as long as you: do NOT sell what you create, you share it under the
same conditions, and you credit us by linking to our website eduversum.org/cvif. Visit the website for additional information and to contact us with comments or suggestions.

Activity Title: What are computers made of? v 03
Learning Target: To describe that the computer is a machine

Authors/References:
H. Shim, V. Sojo
Exploring Computer Science Teacher Version v7.0
https://en.wikipedia.org/wiki/Computer

 Have you ever wondered what computers are made of? Have you ever
seen the inside of a computer? There are two aspects to functional
computers: hardware and software. Hardware refers to all parts of a
computer that are physical objects: circuits, graphic/sound cards, computer
chips, memory (RAM), displays, keyboards, speakers, printers, mouse,
power supplies, etc. Software refers to all parts of the computer that are
not physical: programs, data, libraries, protocols, etc. Knowing all these
parts by heart is not essential for research – even for computational
research. However, it is important to know how computers function since
their performance is related to your performance in research!

Hardware

• Central Processing Unit (CPU) – It manages the various components of
the computer. It reads and interprets instructions, and transforming
them into a set of signals that activate other systems of the computer.

• Memory (RAM) – In modern computers, each memory cell stores
binary numbers in groups of 8 bits called a “byte”. Thus, each byte
can represent 28=256 different numbers. Random-Access Memory
(RAM) can be read and written whenever the CPU commands it.

• Input/Output (I/O) – The means through which computers exchange
information with the user. For input, you may use a keyboard, mouse,
etc., and for output you may use a display, printer, etc.

Software

• Programs – A computer program is a sequence of instructions for
computers to execute in order to produce specific outcomes. Examples
include word processors and web browsers.

• Programming languages – They are communication tools between the
user and computers so a program can be created, implemented and
executed. Examples include C, C++, Java, Python and R.

SHS LEARNING ACTIVITY Research2-05-011

Name: Score/Mark:
Grade and Section: Date:
Strand: o STEM o ABM o HUMSS o ICT (TVL Track)
Type of Activity : o Concept Notes o Skills: Exercise/Drill o Illustration
o Laboratory Report o Essay/Task Report o Other:

This content is released under a CC-BY-NC-SA license. In short, this means you can use and modify it freely as long as you: do NOT sell what you create, you share it under the
same conditions, and you credit us by linking to our website eduversum.org/cvif. Visit the website for additional information and to contact us with comments or suggestions.

Activity Title: 05-03. Computer Buying Project v 02
Learning Target: To ask practical questions on the specifications of a computer

Authors/References:
H. Shim, V. Sojo
Exploring Computer Science Teacher Version v7.0
https://en.wikipedia.org/wiki/Computer

 The CVIF wants to buy a dozen computers, so that the students can
learn programming languages such as Python and R. You are in charge of
choosing computers – you may ask questions such as “What will be the use
of the computer? What is the budget? What are the specifications you need
for the CVIF students to learn programming?” You can look online or
interview the CVIF staff or teacher.

EXERCISES:

1. What is the use of the computer? (1 sentence max)
2. What is the limitation in price range? (1 sentence max)
3. What are the specifications you need to learn basic programming? (1

sentence max)
4. Complete the computer comparison chart.

 Computer 1 Computer 2 Computer 3 Computer 4
Laptop or
Desktop

Operating
System

Processor
(CPU)

Memory
(RAM)

Hard Drive
(Storage)

Screen size
Cost

Others

5. Choose a computer and justify your choice using the information you
gathered. (1 sentence max)

