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    Chapter 4   

 A Beginners Guide to Estimating the Non-synonymous 
to Synonymous Rate Ratio of all Protein-Coding Genes 
in a Genome 

           Daniel     C.     Jeffares     ,     Bartłomiej     Tomiczek    ,     Victor     Sojo    , and     Mario     dos     Reis   

    Abstract 

   The ratio of non-synonymous to synonymous substitutions ( dN / dS ) is a useful measure of the strength 
and mode of natural selection acting on protein-coding genes. It is widely used to study patterns of selec-
tion on protein genes on a genomic scale—from the small genomes of viruses, bacteria, and parasitic 
eukaryotes to the largest eukaryotic genomes. In this chapter we describe all the steps necessary to calcu-
late the  dN / dS  of all the genes using at least two genomes. We include a brief discussion on assigning 
orthologs, and of codon-aware alignment of orthologs. We then describe how to use the CODEML 
program of the PAML package for phylogenetic analysis to calculate the  dN / dS  and how to perform some 
statistical tests for positive selection. We then outline some methods for interpreting output and describe 
how one may use this data to make discoveries about the biology of your species. Finally, as a worked 
example we show all the steps we used to calculate  dN / dS  for 3,261 orthologs from six  Plasmodium  spe-
cies, including tests for adaptive evolution (see worked_example.pdf).  
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1     Introduction 

  With the production of a complete genome sequence a relatively 
routine task, the bottleneck is now the annotation, analysis, and 
understanding of this genome data. A particularly useful statistic for 
protein-coding genes is the ratio of non-synonymous to synony-
mous substitutions  ω  =  dN / dS  (non-synonymous substitutions 
are nucleotide changes that alter the protein sequence, synony-
mous substitutions do not). This ratio measures the strength and 
mode of natural selection acting on the protein genes, with  ω  > 1 

1.1  The  dN / dS  Ratio

 Electronic supplementary material:   The online version of this chapter (doi:  10.1007/978-1- 4939-1438-8_4    ) 
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indicating positive (adaptive or diversifying) selection,  ω  = 1 indicating 
neutral evolution, and  ω  < 1 indicating negative (purifying) selection. 
The  ω  ratio summarizes the evolutionary rates of genes, and can be 
an informative feature, because it can identify which genes are the 
most (or least) conserved and also identify genes that may have 
undergone periods of adaptive evolution [ 1 ]. For parasite genomes, 
this can help to uncover genes that may be changing rapidly in the 
“evolutionary arms race” against the host’s immune system [ 2 ,  3 ]. 
There is an extensive literature on the use of  ω  to study adaptive 
evolution (see for examples [ 1 – 5 ]).  

  To understand why  ω  measures the strength and mode of action of 
natural selection of genes, let’s fi rst consider a new mutation that 
appears in the genome of a single organism in a population. Over 
long evolutionary time scales, two outcomes are possible: the 
mutation may spread throughout the population, until all individ-
uals carry the mutation, that is, the mutation becomes fi xed in the 
population; or the mutation may be lost. The ultimate fate of the 
mutation (that is, whether it becomes fi xed or lost) depends on the 
interplay between natural selection and random genetic drift. 
Population genetics classifi es mutations as either neutral (having 
little effect on the organism), deleterious (bad for the organism), 
or advantageous (good for the organism). Neutral mutations will 
accumulate in the population at the same rate as the genomic 
mutation rate  μ  [ 6 ,  7 ]. On the other hand, deleterious mutations 
may still reach fi xation due to drift, but will accumulate in the 
population at a slower rate  μ  - (< μ ), while those that are advanta-
geous will accumulate at a faster rate  μ  + (> μ ). 

 Let’s now consider only those mutations that occur at codon 
positions in protein-coding genes. Synonymous mutations are 
(mostly) neutral because they do not change the amino acid 
sequence of the protein encoded, and therefore the synonymous 
substitution rate will be the neutral rate  μ  S  =  μ ; on the other hand 
non-synonymous substitutions may be affected by selection and 
the non-synonymous substitution rate will be in general differ-
ent to the neutral rate  μ  N  ≠  μ . Therefore the ratio  ω  =  μ  N / μ  S  indi-
cates the mode of selection acting at non-synonymous sites. In 
practice the rates  μ   N   and  μ   S   are not easy to estimate directly. 
However, the non-synonymous and synonymous distances, 
 dN  =  t μ  N  and  dS  =  t μ  S , among orthologous genes in a phylogeny 
can be estimated from a sequence alignment (with  t  being the 
time of divergence or branch length in the phylogeny) leading to the 
estimation of  ω . Sometimes selection may also act at synonymous 
sites (since some codons may be suboptimal), but this is of main 
concern for highly expressed genes of fast-growing organisms, since 
selection on codon usage is in general very weak for most genes 
in most organism [ 8 ,  9 ]. Methods that explicitly model codon 
usage selection in the estimation of  ω  have been developed [ 10 ]. 

1.2  Principles 
of Evolution in Protein- 
Coding Genes
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For an excellent account of the mathematical theory of  ω , the 
reader can consult Bustamante [ 7 ]. 

 Most non-synonymous changes in coding regions negatively 
alter the structure and function of the protein and are therefore 
deleterious, whereas most synonymous changes are nearly neutral. 
This will result in  ω  < 1 for most genes. When there are strong 
structural constraints on a protein, purifying selection is strong and 
there is little or no accumulation of non-synonymous changes, 
such that the  ω  approaches zero. In this way, the  ω  estimate can be 
used to describe the degree of “selective constraint” (strength of 
purifying selection) in a gene. This can be a very informative value 
for describing sets of genes, which can aid in the interpretation of 
the functioning of the genome [ 11 ]. 

 Of course positive selection does occur, if rarely. If positive 
selection has acted along many of the codons of a gene and 
throughout the entire phylogeny, then  ω  > 1. In practice this sel-
dom happens, because positive selection is usually only observed 
within a specifi c region of the protein (e.g.: a specifi c domain) 
and/or within one branch of the phylogeny (some but not all spe-
cies). In this case the  ω  for the entire gene will be shifted (perhaps 
imperceptibly) towards 1. Models able to detect all these scenarios 
have been developed [ 12 – 16 ]. 

 In this chapter we limit ourselves to describing how to estimate 
 ω  using the CODEML program from the Phylogenetic Analysis by 
Maximum Likelihood (PAML) package [ 17 ]. The CODEML pro-
gram calculates  dN  and  dS  using the observed changes present in a 
multiple alignment of protein-coding gene sequences from several 
species in a phylogeny (i.e., given the phylogenetic tree). Statistical 
estimation of  ω  with CODEML uses maximum likelihood, employ-
ing sophisticated mathematical models to correct for multiple 
changes, accounting for the different numbers of non-synonymous 
and synonymous sites, among other complexities, as briefl y 
described in later sections. We describe a few common tests of pos-
itive selection. We also describe how to prepare the necessary data 
for CODEML, that is, how to identify orthologs correctly and 
build an appropriate sequence alignment, and how to estimate the 
phylogeny (i.e., the tree topology and branch lengths). We show a 
real-life example of these methods by examining selection in a set 
of 3,269 one-to-one orthologs of six  Plasmodium  species.   

2    Materials 

  To implement the processes and run the examples described in this 
chapter you will need access to a computer running a UNIX-like 
operating system (such as Linux or Mac OS X). Although it is possi-
ble to run our examples (Subheading  5 ) on a typical desktop computer, 
many CPU hours will be required to process genome- scale data. 

2.1  Computer 
Resources

A Beginners Guide to Estimating the Non-synonymous…
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In particular, running CODEML for all genes of a genome could take 
considerable computational time, depending on the number of 
species and the number of genes in each species. For example, run-
ning CODEML on 3,261  Plasmodium  orthologs took 10 h (average 
gene length 2.1 kb).  

  We provide a list of recommended software in Table  1 . We indicate 
which of these packages will require administration privileges and/
or moderate knowledge of Unix to install. The software you will 
need depends on your data, so we strongly recommend that you 
read this chapter to the end, including the notes, before installing 
any necessary packages. All the software we recommend is free of 
charge for academic use. The essential software will include:

     1.    BioPerl (to process genome-scale data).   
   2.    An alignment tool (depending on the proximity of your 

sequences, we recommend Clustal Omega [ 18 ] or PRANK C  
[ 19 ]).   

2.2  Software

    Table 1  
     Software recommendations   

 Software  Function  URL  Refs. 

  BioPerl   Wrappers for automating 
running code and fi le I/O 

   http://www.bioperl.org/     

  BLAST +  Ortholog assignment using RBB  Download   ftp://ftp.ncbi.nlm.nih.gov/
blast/executables/blast+/LATEST/     

 Manual   http://www.ncbi.nlm.nih.gov/
books/NBK1763    / 

 [ 31 ] 

 Clustal omega  Protein alignment    http://www.clustal.org/omega/      [ 18 ] 

 PRANK  Protein alignment    http://www.ebi.ac.uk/goldman-srv/
prank/src/prank/     

 [ 19 ,  33 ] 

 GUIDANCE  Alignment fi ltering    http://guidance.tau.ac.il/source.html      [ 38 ] 

 PAL2NAL  Protein-to- nucleotide alignment    http://www.bork.embl.de/pal2nal/      [ 40 ] 

 PAML  Calculating evolutionary rates 
( ω , etc.) 

   http://abacus.gene.ucl.ac.uk/software/
paml.html     

 [ 17 ] 

 RAxML  Calculating phylogenetic trees    http://sco.h-its.org/exelixis/software.
html     

 [ 20 ] 

 MACSE  De novo codon- based alignment    http://mbb.univ - montp2.fr/MBB/
subsection/softExec.php?soft=macse     

 [ 41 ] 

 Custom perl scripts 
developed for this 
chapter 

 Various    http://www.danieljeffares.com/data     

  Software that may require administrator privileges to install are in  bold underlined  text  

Daniel C. Jeffares et al.
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   3.    A package for building phylogenetic trees (we recommend 
RAxML [ 20 ]).   

   4.    The PAML package [ 17 ].    

    To calculate  ω  for all genes in your chosen genomes you will need 
the following:

    1.    An annotated genome for the species you are most interested in: 
This must include accurate protein-coding gene predictions.   

   2.    An annotated genome for  at least  one related species (preferably 
more): To obtain reasonable sensitivity the additional species 
must be suffi ciently closely related to be accurately aligned ( see  
Subheading  3.3  and  Note 1 ).    

3       Methods 

 This section describes how to create the necessary fi les (with vari-
ous options) for running CODEML and parsing results. The 
workfl ow for all these methods is shown in Fig.  1 , and an example 
is provided in the fi le worked_example.pdf. Some guidance on 
interpreting results is also included. Throughout this chapter com-
mands will be shown in monotype font, e.g.,
   perl runscript.pl\ 
  --input   myinputfi le \ 
  [--parameter   100  ]\  

  >   myoutputfi le  
 Parameters (fi le names, etc.) that need to be defi ned by the user 

are italicized, and optional parameters are placed in square brackets. 
To display usage information and show what inputs the scripts 
require, all scripts described here can be run either with no options 
or using the  - h fl ag (or its longer equivalent  --help ), e.g., 
  perl runscript.pl -h  

  For each species to be analyzed, obtain FASTA format sequences 
of all protein-coding genes, and their corresponding translations. 
Often, these can simply be downloaded from a variety of websites 
and servers; we explore this fi rst. 

  If it is possible to download the annotation fi les for some/all of the 
genes in the genomes of the phylogeny you’re analyzing, gathering 
the list of genes is trivial. We provide a script to extract coding 
sequences from a Genbank or Embl format fi le. This script is run 
like this: 

2.3  Input Files 
(Genomes 
and Annotations)

3.1  Generating (or 
Collecting) Input Files

3.1.1  Gathering Gene 
Sequences 
from a Database

A Beginners Guide to Estimating the Non-synonymous…



70

 extract_genes_from_genome.pl\ 

 -I " input_fi le1,input_fi le2, input_fi le3 , etc"\ 
  -s "species1,species2,species3” \ 

  -t tag \ 

  [-f   genbank/embl (embl 175 default)]  

 The input_fi les will be Genbank or Embl format fi les, which 
contain both sequences and the start and end positions of all 
protein- coding exons. Species_name is used merely to name the 
output fi le, and the tag is the delimiter for gene names in the input 
fi le. This tag will differ depending on the species/input fi les. “sys-
tematic_id” is one example. We advise that you look into the 
Genbank or Embl fi le to determine this.  

  Alternatively, it’s possible to generate the necessary DNA and pro-
tein fi les from chromosome sequences or contigs (in FASTA for-
mat) and corresponding annotation fi les (in standard GFF format). 
We provide a script to gather all coding sequence (CDS) fragments 
from the genome and join together those corresponding to the 

3.1.2  Generating Input 
Files from Contigs/
Chromosomes 
and Corresponding 
Genome Annotations

  Fig. 1    A fl ow chart for calculating  ω  on a genome scale. Once you have obtained protein-coding sequences 
(DNA and protein), the steps to prepare data for analysis with CODEML will include ortholog assignment, align-
ment, possible post-alignment fi ltering, and tree construction. Finally running CODEML will produce  ω  values, 
as well as  dN  and  dS . Running CODEML again with different models of evolution and then conducting likeli-
hood ratio tests will give likelihood ratio test (LRT) values, which can then be tested for signifi cance against  χ  2  
critical values. See main text for details       
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same gene in the correct order, using gene coordinates from the 
GFF fi le. Protein sequences are then produced by translating these 
CDS sequences using BioPerl. If provided, the script will also com-
pare its own translations to a set of corresponding protein sequences 
from an initial genome annotation and ignore those that do not 
match, or print a warning and take the translation. This script is 
run as follows: 
     perl get_cds_prot_from_gff_cont.pl -i   input_
folder   -o   output_folder   -g   annotations.gff   -d  
 contigs.fasta   [-l   list_of_desired_ids.csv  ]  

 The optional  -i  fl ag takes the address of a folder where the 
input fi les are to be found, and analogously for  -o  and the output 
fi les.  -g  is required; it takes an annotation fi le in GFF format (ver-
sion 3 by default, although this can be changed).  -d  is also required, 
and it takes a DNA sequence fi le in which the sections that contain 
the genes specifi ed in the annotations can be found. By using  -l  
you can specify a list of desired IDs from the GFF fi le to process; if 
you don’t provide such list, the script will simply process all the 
genes in the GFF fi le. You can additionally specify a fi le containing 
all protein sequences by using  -p . As with all our scripts, a full list 
of options can be obtained by running it with no options specifi ed, 
or using the  -h  (or  --help ) fl ag. The fi nal output of this script 
consists of a pair of fi les for each gene, one for the combined CDS 
DNA sequences, and the other for the protein sequence, both 
identifi ed by the same gene ID ( <gene_id>.dna.fasta  and 
 <gene_id>.prot.fasta , respectively).   

  Once you have obtained the protein translations of each gene for 
each genome, the next step is grouping genes into sets of ortho-
logs. These orthologous groups of genes will then be aligned and 
used as input for CODEML. “Orthologs” are homologous genes 
that were separated by speciation while “paralogs” are homolo-
gous genes that were separated by gene duplication [ 21 ]. For a 
review of the principles and complexities of orthology  see  ref.  22 . 

 Many tools have been created to assign orthologs (for reviews, 
 see  refs.  23 – 26 ). The three main approaches use sequence similarity 
with graph clustering, phylogenetic trees, synteny, or a combina-
tion of several methods. The differences between the performance 
of the widely used methods on the same data appear to be fairly 
small—the major factor is the complexity of the proteomes involved 
(number of proteins, number and complexity of gene duplications, 
extent of multi-domain proteins, and domain-shuffl ing) [ 25 – 27 ]. 
It is important to appreciate that all orthology prediction methods 
will contain errors. These should be identifi ed and removed where 
possible. We provide guidelines at later stages to account for these. 
The most common approach is to remove all orthology groups 
that have more than one ortholog per species (retaining only 1:1 

3.2  Identifying 
Orthologs
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orthologs). This will remove the complication of paralogs that are 
due to gene duplications. 

  If a manually curated set of orthologs has been produced as part 
of a genome project, particularly any that use synteny, we encour-
age you to use these. Another alternative is that for published 
genomes, ortholog assignments may have been produced in one 
or more orthology prediction databases, such as OMA or 
OrthoMCL ( see  Table  2 ).

     If ortholog lists are not available we recommend the Reciprocal 
Best BLAST hit (RBB) method (with simple clustering for multiple 
species). This method is simple, fast, scalable, arguably as accurate 
as tree-based methods, and does not need extensive parameter 
optimization [ 27 ]. However,  see  ref.  28  for advice about BLAST 
options. 

 The (RBB) method assigns two proteins (genes) as orthologs 
if protein A from species 1 identifi es protein A’ from species 2 as 
its best hit, and vice versa [ 29 ,  30 ]. This requires that you run a 
BLAST search for each protein against each other genome in turn. 
The recommended BLAST parameters for RBB are a minimum 
BLASTP Evalue ≤1e −5  or ≤1e −6 , and the combination of soft fi lter-
ing with a Smith–Waterman fi nal alignment (the -F “m S” -sT 
options in NCBI’s BLASTP) [ 27 ,  28 ]. 

3.2.1  Obtaining 
Predefi ned Orthologs 
for the Species in Your 
Phylogeny

3.2.2  Reciprocal Best 
BLAST Hit Method 
to Assign Orthologs

    Table 2  
  Useful websites   

 Contents/topic  URL 

 Guide to using BioPerl modules to run 
PAML and parse output 

   http://BioPerl.org/wiki/HOWTO:PAML     

 PAML discussion group    http://www.ucl.ac.uk/discussions/viewforum.php?f=54     

 Database of ortholog groups of eukaryotic 
proteins using InParanoid 

   http://inparanoid.sbc.su.se/     

 Database of ortholog groups of proteins 
using OrthoMCL 

   http://www.orthomcl.org     

 Clusters of orthologous groups of proteins 
from whole genomes 

   http://www.ncbi.nlm.nih.gov/COG/     

 OMA (Orthologous MAtrix) database 
of orthologs for complete genomes 

   http://omabrowser.org/     

 Treefam (tree families database)    http://www.treefam.org/     

 Gene ontology    http    :  //      www    .  geneontology    .  org      /     

 A list of orthology databases    http    :  //      questfororthologs    .  org      /      orthology      _      databases     
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 The pairwise RBB method may be extended into a clustering 
algorithm (cRBB) so that it can be applied to more than two 
genomes as follows [ 27 ]. For the genes A,B,C (from species  a, b, 
c ) to be clustered into an orthologous group gene B must be the 
reciprocal best hit (RBH) to gene A, and gene C must be the RBH 
to  either  gene A or gene B. If not, then gene C is not included in 
the ortholog group.
  To determine cRBB you will require: 

  (a)    FASTA format fi les of all protein sequences of all species 
considered (one fi le per species).   

  (b)    An installation of BLAST (we advise BLAST+) [ 31 ].   
  (c)    Wrapper script(s) to run BLAST searches and cluster 

best hits.    

  We provide a script to produce a list of orthologs from a full 
analysis of a set of genomes using this RBB approach. Note that 
this script is likely to take a few hours to run, due to the many 
BLAST searches performed: 
  perl prthologs_from_RBBH.pl -o   orthologs.csv   -i 
"  all_proteins_species_1.fasta,all_proteins_
species_2.fasta,all_proteins_species_3.fasta  "  

 Multiple fi les can be specifi ed in the usual UNIX way (e.g., 
 "*spec*.fasta" ). This script runs a Reciprocal Best BLAST 
hits method and produces a set of orthologous gene IDs separated 
by a comma and indexed by the fi rst species. The output fi le con-
sists of a list of such comma-separated sets. In the example above 
only lists with orthologs in all three species will be returned, but 
adding  -n 2  would return all sets with two or more orthologs.   

   Alignments can be an important source of false-positive cases 
(incorrectly inferred adaptive evolution) [ 32 – 34 ], so the choice of 
an alignment tool is an important consideration. A particular con-
cern in the context of this chapter is that alignment quality decreases 
with decreasing protein similarity [ 18 ]. So this places a limit on the 
degree of divergence that can be used in calculations of evolution-
ary rates, particularly when false positives are a concern (such as 
when the aim is to detect the few genes that are subject to positive 
selection). In general, reliable alignments can be produced with 
Clustal Omega (and several other tools) with proteins that have at 
least 70 % identity [ 18 ]. In this section we give an overview of the 
typical steps you will need to follow if you’re writing your own 
scripts, followed by instructions for running a script we provide 
that integrates all the relevant tasks. Finally, we provide an alterna-
tive script when reliable translations of your coding sequences 
(CDS) are not available. 

3.3  Alignment 
of Orthologs

A Beginners Guide to Estimating the Non-synonymous…



74

  There are many alternative tools for aligning multiple protein 
sequences. At the present time, two of the most reliable programs 
are Clustal Omega [ 18 ] and PRANK [ 19 ]. Clustal Omega appears 
to be the most powerful (fast, accurate) for divergent proteins, 
whereas PRANK performs well on more closely related sequences. 
PRANK has been explicitly designed for evolutionary analysis and 
performs well under simulation [ 33 ,  35 ]. We do not advise using 
the older ClustalW which is an entirely different program to the 
newer Clustal Omega. 

 With any level of divergence that provides suffi cient power to 
detect adaptive evolution, alignments will contain errors [ 18 ] that 
cause false positives and false negatives [ 33 ]. In particular inser-
tions and deletions are a major source of false positives in the 
detection of adaptive evolution using CODEML [ 35 ]. Using the 
 cleandata  option in CODEML may reduce the false positives, but 
at the possible loss of interesting sites. There are various fi ltering 
methods available to remove potentially unreliable alignment col-
umns or codons [ 36 – 38 ]. The use of these is equivocal; they appear 
to improve evolutionary analysis in some cases [ 39 ], but have neg-
ligible effects in others [ 33 ]. In practice, alignment fi ltering will 
produce a more conservative analysis—lowering both false posi-
tives and true positives. It is diffi cult to generalize about the cost/
benefi t of such approaches. For a detailed analysis, we recommend 
comparing results produced from fi ltered and unfi ltered alignments. 
Based on two simulation studies [ 33 ,  39 ], we recommend the 
GUIDANCE tool for alignment fi ltering [ 38 ]. 

 Programs that calculate  dN / dS  will require codon-based align-
ments of the DNA sequences of all genes in each ortholog group; 
therefore gaps should be positioned so as not to change the reading 
frame. If you aligned the CD sequences with PRANK using the 
translate option or using the empirical codon models you will 
already have codon-based DNA alignments. On the other hand, if 
your alignment program generated amino acid alignments, you will 
need to perform “reverse translation” to construct a codon align-
ment from the unaligned DNA sequence fi les and the aligned amino 
acid sequence fi les. This is best achieved by aligning the correspond-
ing protein sequences, and then converting the protein alignment 
to a nucleotide alignment using the corresponding gene sequences. 
We recommend the conducting analysis tool for this task [ 40 ]. This 
software produces a codon alignment with options for removing 
gaps and in frame stop codons, as well as mismatched codons. The 
“native” format for the CODEML program is the PHYLIP format, 
with some small modifi cations. We suggest that you refer to the 
PAML manual before constructing DNA alignments ( see  Table  1 ). 

 In summary, care must be taken to obtain the best alignment, 
and we recommend particular care and skepticism for this stage in 
the analysis. This is particularly important when conducting analy-
sis on a genome scale, because a few false positives could dominate 

3.3.1  Considerations 
for Choosing a Multiple 
Alignment Tool
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any signal for adaptive evolution, or skew the  ω  estimate with a 
systematic bias to particular types of genes.  

  We provide a script to automate the tasks described above for a 
genome-scale list of sets of orthologs. To run it, you will need:

    1.    A list of sets of orthologs in a comma-separated value (CSV) 
fi le, where each line has a set of related orthologous gene IDs 
separated by a comma ( see   Note 2  for an example of the CSV 
fi le, and comments).   

   2.    DNA and protein sequences for each desired gene, in FASTA 
format, identifi ed by the same gene ID indicated in the ortho-
logs CSV fi le, and named  <gene_id>.dna.fasta  and 
 <gene_id>.prot.fasta.    

   3.    Run the script:     

  perl align_orthologs.pl -l   orthologs.csv   -i  
 input_folder   -o   output_folder   -c -a  

 The  -l  option receives a list of orthologs in a CSV fi le, as 
described above.  -i  receives the location of the folder where your 
DNA and protein sequences reside, and you can also specify the 
folder where you want to put your output fi les via the  -o  option. 
 -c  tells the script to do the protein alignment using Clustal Omega, 
and -a indicates that you want to calculate PAL2NAL codon 
 alignments. The script will print out warnings for any input fi les it 
cannot fi nd, and it will only produce alignment fi les if it can fi nd 
two or more of the orthologs in each set (i.e., each line of the 
CSV). You can send the list of any missing information to a fi le by 
adding the  -e  fl ag. 

 It is also possible in theory to align protein-coding sequences 
when reading frames are not known, using software such as 
MACSE [ 41 ] ( see   Note 3 ). If the goal of the analysis is to identify 
genes that are subject to positive selection, we advise caution when 
using such methods, because alignment inaccuracies increase the 
rate of false-positive results, as well increase (the already abundant) 
false negatives [ 35 ].   

  Model testing with CODEML requires a phylogenetic tree of 
either the group of species or the gene concerned. When using 
CODEML “site tests” for positive selection are robust to tree 
topology, so in general the species tree should be used. This is the 
most common case ( see  below Subheading  3.5 ). If a species tree is 
not available, we recommend that you estimate one tree for the 
species you will analyze using a concatenation of all the aligned 
orthologs (see below). This should increase the power to detect 
cases where particular branches of the phylogeny have an increased 
evolutionary rate in a few orthologous groups. An exception is that 

3.3.2  Producing 
Codon-Specifi c Alignments 
from an Ortholog List

3.4  Estimating 
Phylogenetic Trees
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in the unlikely scenario there is evidence for recombination between 
your species (i.e., if they are strains within a species or very recently 
separated species), then you may wish to estimate topologies for 
each gene. A concatenation of all aligned CDS sequences can be 
achieved with the concatenate_alignments.pl script that we provide 
( see  Table  5 ). 

 There are many tools to estimate phylogenetic trees based on 
sequence data. We recommend the RAxML tool, which is fast 
and suffi ciently accurate [ 20 ], run using the GTR gamma model. 
To obtain a phylogeny for  ω  estimation the command line 
required to run RAxML is 
  raxmlHPC -f a -x 12345 -p 12345 -# 100 -m   GTRGAMMA  
 -s   your_alignment_fi le.phy   -n   your_alignment_
prefi x   

    PAML is a package of programs designed to analyze molecular 
sequences and estimate a variety of parameters of molecular evolu-
tion [ 17 ]. We concern ourselves here only with estimates of  ω , 
and attempts to detect positive selection using the CODEML 
application in PAML. For more advice the PAML FAQ and PAML 
manual will be helpful, as will the PAML discussion group ( see  
Table  2 ). The statistical theory of adaptive evolution is reviewed 
in [ 42 ]. We also recommend these more technical articles for fur-
ther reading [ 15 ,  17 ,  32 ,  43 ]. There are of course other tools for 
calculating non-synonymous and synonymous evolutionary rates 
apart from CODEML. We recommend HyPhy, a particularly 
versatile tool for testing models of evolution [ 44 ]. While HyPhy 
allows the user to specify virtually any model for evolution, some 
expertise is needed to do this because this tool has its own batch 
language. The sitewise likelihood-ratio (SLR) software package is 
another alternative [ 45 ]. The SLR method makes less assumptions 
about how the strength of selection is distributed across sites and 
is considered complementary to PAML. As with PAML, the 
HyPhy and SLR tools are all in active development (as of 2012). 
We do not describe how to use HyPhy or SLR in this chapter. 

 Adaptive evolution seldom occurs in all species of a phylogeny, 
or over all sites in a gene, which makes it more diffi cult to locate 
the genes/sites concerned. The more likely scenario is that positive 
selection has occurred in some branches of the phylogeny, or in 
some specifi c sites in the gene or only in specifi c sites in some 
branches of the phylogeny. Each of these possibilities is formalized 
into a “model,” so that possible processes of evolution can be 
tested for explicitly. The main classes of models used in CODEML 
are “branch models” (where  ω  can vary over different branches in 
the phylogeny), “site models” (where  ω  can vary at different sites 
in the gene), and “branch-site” models (where  ω  can vary in 
 particular sites, in particular branches). In tests for adaptive evolu-
tion that use branch models, positive selection is detected along 

3.5  Using CODEML 
to Calculate  ω  
and Identify Positive 
Selection

3.5.1  Concepts 
in CODEML
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the branches only if the average  ω  over all codons in the gene is 
larger than one. This is unlikely to occur, because even if a few sites 
in the protein are evolving fast along the branch the average  ω  may 
not be >1, because most of the sites in the protein will remain 
under purifying selection. However some authors managed to get 

    Table 3  
  Models of adaptive evolution implemented in CODEML a    

 Model  Description 

  Site models  

 M0 (one ratio)  One average  ω  for the gene 
 Null model for testing if selected branches evolve with different rate than the 

background branches 
 Specify using NSsites = 0, model = 0 

 M1a (nearly neutral)  One  ω  across all lineages, models only two classes of sites (0 ≤  ω  <1 and  ω  = 1) 
 Specify using NSsites = 1, model = 0 

 M2a (positive 
selection) 

 One  ω  across all lineages, models three classes of sites (0 < =  ω  < 1,  ω  = 1, and 
 ω  > 1) 

 Specify using NSsites = 2, model = 0 

 M7 (beta)  One  ω  across all lineages, ten classes of sites with  ω  < = 1 
 Specify using NSsites = 7, model = 0 

 M8 (beta and  ω )  One  ω  across all lineages, 11 classes of sites on all lineages, 10 with  ω  ≤ 1, 1 
with  ω  > 1 

 Specify using NSsites = 8, model = 0 

  Branch models  

 Free-ratio model  Allows different  ω  for each branch of the tree. 
 Specify using NSsites = 0, model = 1 

 Two-ratio model  Allows several  ω  values for a specifi ed branch (the “foreground” branch, 
usually your species of interest). The user must specify which this 
“foreground” branch, and the other “background” branches 

 Specify using NSsites = 0, model = 2 

  Branch-site models  b  

 Model A  Like site M1a, M2 site model, but marked branches are treated as foreground 
allowing three classes of sites (0 <  ω  < 1,  ω  = 1,  ω  = >1), and others, as 
background with only two classes of sites ( ω  = 0,  ω  = 1) 

 Specify using NSsites = 2, model = 2, fi xomega = 0 

 Model A1  Null model, foreground branches allowing two classes of sites (0 <  ω  < 1,  ω  = 1), 
and others, as background with only two classes of sites (0 <  ω  < 1,  ω  = 1) 

 Specify using NSsites = 2, model = 2, fi xomega = 1 
   a In all these models  ω  < 1 indicates purifying selection,  ω  ≤ 1 indicates selection in a purifying to nearly neutral range, 
 ω  = 1 indicates neutral evolution, and  ω  > 1 indicates adaptive evolution. The  ω  values can refer either to the entire gene 
or to some sites (codons) within a gene. In some cases the models allow for adaptive evolution ( ω  > 1) in some sites 
within one branch of the tremanue (“site-branch” models) 
  b See the PAML manual (Version 4.6, March 2012) for how to direct CODEML to use these models. Note that Model 
B and Site model 3 are no longer recommended  
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positive results using this approach to detect adaptive evolution 
[ 4 ,  46 ]. A more realistic model is site models, which allow  ω  to 
vary only within specifi c sites of the gene, but for all species. Finally, 
branch-site models allow  ω  to vary both among sites and across the 
branches of the phylogeny. These are probably the most realistic 
models. The models that are currently recommended to test these 
alternatives are described below ( see  also Table  3  for summary of 
the models used in CODEML, and how to direct CODEML to 
use these models).

     1.    The  one-ratio model  (M0 in CODEML) calculates the average 
 ω  for the whole gene, over all branches in the phylogeny. This 
is useful to obtain the average  ω  value for the gene, but is not 
thought to be a suffi ciently realistic model to detect adaptive 
evolution.   

   2.    The  Nearly Neutral model  (M1a) classifi es codon sites in a 
gene into two groups: one group has codons subjected to puri-
fying selection ( ω  < 1), and the other group has codons under 
neutral evolution ( ω  = 1). There are no codons under positive 
selection ( ω  > 1).   

   3.    The  Positive Selection model  (M2a) as the NearlyNeutral model, 
but an extra class of codon sites subjected to positive selection 
( ω  > 1) is allowed.   

   4.    The  beta model  (M7) uses the fl exible beta distribution to 
describe  ω  variation among sites. The distribution of  ω  values 
can take a variety of shapes in the range from 0 to 1, so codons 
under positive selection are not allowed.   

   5.    The  beta and ω model  (M8) is the same as the beta model, 
except that it allows for some sites to be subjected to positive 
selection ( ω  > 1).    

  The application of maximum likelihood in CODEML allows 
these models of evolution to be described as mathematical sum-
maries of the stochastic process of molecular evolution. CODEML 
uses a maximum likelihood approach to attempt to fi t the observed 
data (the sequence alignment) to the model of evolution that you 
specify. This involves estimating parameters such as the branch 
lengths, the transition/transversion ratio, and the  ω  ratio (see the 
PAML manual for details). Once this is done CODEML provides 
the parameters that are its best fi t to the data and a  likelihood value.  
This  likelihood value  ( L ) is the probability of observing the data 
with parameters generated by the model. Likelihood values are 
provided in the natural log, ln L  ( see   Note 4  for further details). 

 To determine if positive selection has occurred in a gene, you 
will need to show that a model that includes positive selection 
(where  ω  > 1 in some sites) fi ts the data better than one that does 
not include positive selection (i.e., no  ω  > 1 sites). This is achieved 
as follows:
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    1.    Run CODEML with a simple model that does not allow posi-
tive selection. CODEML will estimate  ω  and determine the 
ln L  for each gene with this model ( l  0 ).   

   2.    Run CODEML with a more general model that allows positive 
selection. CODEML will estimate  ω  and determine the ln L  for 
each gene with this model ( l  1 ).   

   3.    Determine which model is more likely for each gene using a 
likelihood ratio test (LRT,  see   Note 4 ). The LRT statistic = 
2 × ( l  1  −  l  0 )   

   4.    You may reject the simpler model for any particular gene if the 
LRT statistic is greater than the critical  χ  2  value with  k  degrees 
of freedom ( see   Note 4 , and example in supplementary fi le 
worked_example.pdf).    

  We describe in the next sections a general schema for how to 
do this in practice. We also provide a detailed step-by-step example 
of this process in the supplementary fi le worked_example.pdf. This 
example shows how we calculated  ω  for all the 1:1 orthologs in six 
 Plasmodium  species, and detected some statistically supported 
cases of adaptive evolution.  

  Once you have a codon-specifi c alignment and a phylogenetic 
tree, the next step is to run CODEML with a null model (usually 
model M0). The models are specifi ed in the CODEML control 
fi le (usually with a .ctl extension). The control fi le also specifi es 
which sequence fi le, the tree fi le, and other parameters that 
CODEML should use. A detailed explanation of this fi le and all 
the options available is given in the PAML manual, and we pro-
vide an example CODEML-M0.ctl in supplementary material. 
The most important parameters to note are: 
  seqfi le = myfi le.paml  

 The sequence alignment fi le (containing all gene alignments). 
  treefi le = tree.txt  

 The plain text fi le containing the phylogenetic tree of the spe-
cies, in Newick format. 
  outfi le = M0-output.txt  

 The name of the output fi le. 
  ndata = N  

 Where  N  is the number of alignments to be analyzed. 
  CodonFreq = 2  

 Which specifi es which positions to use to calculate the nucleotide 
frequencies. 
  model = 0  

3.5.2  Estimating  ω  
for All Genes Using 
the Simple One Ratio 
Model
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 This specifi es whether to allow  ω  to vary among lineages in the 
phylogeny. 
  NSsites = 0  

 Specifi es whether the model CODEML uses  ω  to vary among 
sites of a gene. 

 Once you have edited your control fi le, you should run 
CODEML: 
  codeml codeml-M0.ctl  

 Expect CODEML to run for many hours (our example of 3,261 
 Plasmodium  orthologs took 10 h). The output will be contained 
in the fi le you specifi ed (M0-output.txt above). It is simple to extract 
the  ω  values from CODEML’s output fi le with grep: 
  grep omega M0-output.txt > M0-omega.txt   

  To evaluate whether the data for a particular gene fi ts an alternative 
evolutionary model you will need to run CODEML again, specify-
ing another model. This is done by modifying the control fi le (sav-
ing it with a new name), sometimes modifying the tree fi le, and 
running CODEML again. The most common use for this is to 
examine whether each gene better fi ts a model that includes  some 
sites  that have adaptive evolution (where  ω  > 1) .  Remember that it 
is unlikely that the average  ω  for the  entire gene  will be >1. Once 
this is done CODEML will produce a log likelihood estimate 
(lnL), which you can use for likelihood ratio tests. To determine 

3.5.3  Estimating  ω  
and the lnL for All Genes 
Using Alternative Models

     Table 4  
  Recommended tests of selection in CODEML   

 Models   k   Hypothesis tested 

  Site models:   M2a vs. M1a  2 a   Does adding a third class of sites with  ω  > 1 (adaptive 
evolution) fi t the data better than a model with two 
classes  ω  < 1,  ω  = 1? 

 M8 vs. M7  2 a   Does adding an extra class of sites with  ω  > 1 (adaptive 
evolution) fi t the data better than a model with ten 
classes with fl exible normalized non-synonymous 
ratio distribution? 

  Branch 
models : 

  Free-ratio  vs. 
 one-ratio  model 

 2  s –4  For a tree of  s  species, is  ω  different among lineages? 

  Two-ratio  vs. 
 one-ratio  model 

 1  Are the foreground branches that you specify more 
likely to have different  ω  from background branches? 

  Branch-site 
models : 

 MA( ω  > 1) vs. 
MA( ω  = 1) 

 1 b   Is the defi ned “foreground branch” more likely to 
contain sites with  ω  > 1 

   a In these models the regularity conditions are not met and the asymptotic distribution of the LRT statistic is not known. 
Using  χ  2  with the given  k  degrees of freedom possible makes the test conservative (Yang and dos Reis [ 32 ]) 
  b In the branch-site test, the asymptotic distribution of the LRT statistic is a 1:1 mixture of point mass zero and  χ  2  with 
 k  = 1 (Yang and dos Reis [ 32 ])  
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which model to use as the null and alternatives, consult Table  4 . 
For example, comparing the model M2a (which allows some sites 
to have  ω  > 1) against the null model M1a (which doesn’t allow 
this) examines whether the data better fi ts a model with some 
adaptive evolution. See below for more detail about the likelihood 
ratio tests.

     1.     To specify a site model : Modify your control fi le to include these 
lines (deleting the previous settings). The “NSsites = 0 1 2 7 8” 
text instructs CODEML to determine the lnL with several 
models. Note that site models allow you to predict which sites 
have been subject to selection. 
  model = 0  
  NSsites = 0 1 2 7 8  
  outfi le = site-models-output.txt    

   2.     To specify a branch model : Modify your tree fi le to mark the 
branch that you wish to test. This is done by adding a hash tag 
(e.g., “#1”) to the branch: e.g.: 
  (((2,(3, 1)),6 #1),5,4)  
 For clarity, save your tree fi le with a new name. Then modify 
your control fi le to include these lines: 
  treefi le = marked-tree.txt  
  model = 2  
  NSsites = 0  
  outfi le = branch-model-output.txt    

   3.     To specify a “branch-site” model : Modify your control fi le to 
include these lines: 
  treefi le = marked-tree.txt  
  model = 2  
  NSsites = 2  
  outfi le = branch-site-model-output.txt  
  fi x_omega = 1  
  omega = 1     

    Once you have run CODEML with a null model and an alternative 
model, you will then use a likelihood ratio test to see if the data are 
a signifi cantly better fi t to the alternative model ( see  Table  3  or 
models and Table  4  for which null and alternative models to test). 
Note that adaptive evolution is usually rare in genomes, so the no-
selection model is usually the null. The steps to take to perform a 
likelihood ratio test are the following:

3.5.4  Likelihood Ratio 
Tests (LRT) of Positive 
Selection
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    1.    A log likelihood (ln L ) value for each gene has been calculated 
by CODEML for a null and alternative model.   

   2.    Calculate the value of the LRT statistic (twice the difference of 
the log-likelihood between the null model and alternative 
model).   

   3.    Determine the degrees of freedom ( k)  for your test. This is 
calculated as  k  =  p  1  −  p  0 , where  p  1  is the number of parameters 
estimated in the alternative model, and  p  0  is the number of 
parameters in the null model. For simplicity, we list the degrees 
of freedom in Table  4 .   

   4.    Compare the LRT statistic with the critical value from  χ  2  distri-
bution, with the appropriate degrees of freedom ( k ) and the sig-
nifi cance level that you want ( α ), which is usually 0.05 or 0.01.   

   5.       (a)     If the value of the LRT statistic is greater than the critical 
value, you reject the null hypothesis, which means that 
there are sites (or branches, depending on the test) that 
have undergone adaptive evolution.   

  (b)    Alternatively, the  p -value can be calculated from the cumu-
lative distribution function of the  χ  2  statistic where appro-
priate ( see   Note 5 ). These models are described in the 
following references [ 14 ,  47 ,  48 ].        

    Table 5  
  Scripts we provide with this chapter   

 Script  Function 

  genes_from_genome.pl   Extracts CDS sequences and proteins from a 
Genbank or Embl fi le 

  gff_cds_proteins_processor.pl   Extracts CDS sequences from a FASTA nucleotide 
fi le according to GFF coordinates, translates 

  orthologs_from_RBBH.pl   Assigns orthologs using the clustered Reciprocal 
Best Blast (cRBB) approach 

  align_orthologs.pl   Aligns proteins, generates codon-aware nucleotide 
alignment 

  multiple_sequence_splitter.pl   Splits a FASTA fi le with many sequences into one 
fi le per sequence 

  concatenate_alignments.pl   Takes a list of alignment fi les and outputs a single 
concatenated alignment fi le 

  codeml_simple.pl   Runs CODEML for all genes in a list 

  codeml_site_models.pl   Runs CODEML for all genes in a list. Performs 
the likelihood ratio tests for site models 

  codeml_branch_models.pl   Runs CODEML for all genes in a list. Performs 
the likelihood ratio tests for branch models 
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  When testing for adaptive evolution on thousands of genes, a 
method to correct for multiple testing is desirable. We recommend 
using the false discovery rate approach described by Benjamini 
et al. [ 49 ] .  

 For large sets of data you can perform all CODEML calcula-
tions and the tests using our perl wrapper scripts ( see  Table  5 ).

     Genes that were identifi ed as containing sites under selection can 
be investigated further to determine the probability that each 
codon has been subject to adaptive evolution ( ω  > 1). CODEML 
will already have performed a Bayesian identifi cation of these sites 
(as described in [ 50 ,  51 ], which is presented in the main output fi le 
(e.g., branch-site-model-output.txt above). We provide more 
detail about how to examine this output in the supplementary data 
fi le worked_example.pdf.    

4    Interpreting Results on a Genome Scale 

 A genome-scale evolutionary analysis of protein-coding genes can 
be very useful for describing features of the genome. Two 
approaches to describing genomes using evolutionary values are 
(a) to plot and correlate evolutionary parameters ( ω , etc.) with 
other quantitative features of genes (e.g., expression levels) and (b) 
to group genes by various methods (e.g., Gene Ontology) and 
then look for groups of gene with signifi cantly higher/lower evo-
lutionary parameters. 

  It is most often found that  ω  correlates with the expression 
“breadth” (the number of tissues it is present in) or expression 
level of a gene, for example [ 11 ], but other correlating features of 
genes with  ω  (or  dN  or  dS ) could also reveal new features of 
genomes. It is important to appreciate in these analyses that many 
aspects of genes are correlated [ 52 ], so further analysis will be 
required to determine which aspect(s) of the gene causes the cor-
relation [ 53 ,  54 ]. A balanced analysis should take into account that 
statistically signifi cant  p -values can be obtained with large data sets, 
even when the strength of the effect is very weak (i.e., high  p -value, 
but low correlation coeffi cient  rho ) .  Plotting data and reporting 
only the strongest effects will help to distinguish biologically mean-
ingful results from those that are very weak effects that produce 
very statistically signifi cant  p -values merely because of the large 
number of observations.  

  There are a variety of ways to group genes that can be revealing. 
The use of Gene Ontology (GO) is common [ 1 ,  11 ,  55 ]. Within 
gene ontology both biological function, biochemical function, and 
the cellular location aspects can be revealing. The PANTHER soft-

3.5.5  Detecting 
Particular Sites That Have 
Been Subject to Selection

4.1  Correlating 
Evolutionary 
Parameters with Other 
Features of Genes

4.2  Comparing 
Evolutionary 
Parameters Between 
Group of Genes
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ware system for inferring the functions of genes based on their 
evolutionary relationships [ 56 ] is another alternative. Clustering 
genes by their similarity of expression or by principal tissue (or life 
cycle stage for parasites) they are expressed in can also reveal salient 
patterns [ 11 ,  57 ]. Genetic or protein interaction maps can also be 
used to group genes. 

 Once genes have been grouped, the approach is to show the 
extent to which different groups of genes differ in their evolution-
ary features by comparing evolutionary parameters (such as  ω, dN , 
 dS , the LRT statistic, or the  p -value from LRT tests) between 
groups of genes. Simply sorting groups by their median values and 
plotting can be suffi cient, for example [ 5 ]. To test whether specifi c 
groups of genes have more/less constraint a Mann–Whitney test is 
most often used because it is nonparametric (does not assume that 
the data have any particular distribution, e.g., normal distribu-
tion). In this case one might test whether the genes in a particular 
group have a different distribution to another group, or differs to 
all other genes. To locate particular groups of genes that are evolv-
ing adaptively, then the likelihood ratio test (LRT) statistics of the 
genes can be compared with Mann–Whitney tests. Another alter-
native is to count the number of genes in a group that pass a mean-
ingful LRT signifi cance value, and use a Fisher’s exact test to 
determine if the group is enriched for positively selected genes. 

 Regardless of the methods used it is important to use a method 
to correct for multiple comparisons. The Bonferonni correction is 
in common use, but other methods are available [ 58 ,  59 ]. Finally, 
we suggest some healthy scepticism about genes that appear to 
have undergone adaptive evolution (e.g., high  ω ). If possible man-
ual checks of the alignments and orthology may aid in rejecting 
false positives.   

5     Final Comments 

 The methods we have described should enable you to calculate  ω  
and detect possible cases of adaptive evolution for all the genes in 
your genome. We advise care with all steps, particularly collecting 
suffi cient data to have good power (more genomes is better), align-
ments, and CODEML model testing. Keep in mind that  ω  is not 
the only test for non-neutral evolution; some other methods are 
described in [ 60 ], which may require different data types. The 
methods described are, to the best of our knowledge, up to date 
when this chapter was written. However, things change, so we 
encourage readers to post comments on CiteULike at   www.citeulike.
org/user/danieljeffares/publications    . 

 Supplementary data will be available on   http://www.danieljeffares.
com/data    .  
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6    Notes 

        1.    To calculate  dN / dS  accurately from alignments of ortholo-
gous genes the sequences must not be too closely related, or 
too distant. If sequences are too closely related (e.g., all 
sequences >95 % identity on the DNA level) there will be little 
power to accurately estimate  dN  and  dS , since there will be too 
few observed changes. Because CODEML (and other tools) 
estimate parameters such as these from the observed genetic 
changes, the power of the analysis increases when there are 
more changes observed. Increased power can be attained in 
two ways. First, by choosing species that are suffi ciently diver-
gent. This approach is helpful up to the point where orthologs 
cannot be assigned correctly or DNA mutations (substitutions) 
at fast-evolving sites are saturated. The PAML FAQ also states 
that the method is reasonable if the synonymous distance over 
all branches of the tree is >0.5; this approximate fi gure is sup-
ported by simulations [ 33 ]. In practice, this means that when 
looking at an alignment of a protein-coding gene most syn-
onymous sites have a change in one or more of the species. 
Secondly, the power increases with increasing number of 
orthologs (species) in the alignment. The PAML FAQ recom-
mends that the absolute minimum number of species is 4 or 5 
and that 10 is good, but 20 would be better. Simulations show 
that good estimates of  ω  can be obtained with six species, while 
detection of adaptive evolution has relatively low power with 
this many taxa [ 33 ]. In practice of course, it is nontrivial to add 
another genome to your analysis after data have been gathered 
for a project, but it is an important consideration if accurate 
and sensitive evolutionary analysis is a desired outcome.   

   2.    The ortholog list fi le that the  ortholog_processor_
aligner.pl  script requires should be in this format: 
  GENE_1_SPECIES1,GENE1_SPECIES2,GENE1_
SPECIES3  
  GENE_2_SPECIES1,GENE2_SPECIES2,GENE2_
SPECIES3  
 Since the scripts use each gene ID to fi nd corresponding fi les, 
sequences, and annotations, it is crucial to use exactly the same 
spelling all across (however, note that our scripts can get rid of 
most non-word characters like “_” or “#”). In case you already 
have fi les containing the sets of orthologous DNA sequences, 
provide a list with only one ID per line, corresponding to the base 
name of each of the fi les that contain the orthologs, which in turn 
should be named  <gene_id>.orthologs.dna.fasta  and, 
optionally,  <gene_id>.orthologs.prot.fasta    
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   3.    When annotations of protein-coding sequences are unreliable 
or absent it is possible to produce “de novo” codon-based 
nucleotide alignments with packages such as MACSE [ 41 ]. 
This software can generate multiple-sequence alignments 
accounting for disruptions in the reading frame (stop codons 
or frame shifts arising either from sequencing errors or biologi-
cal deviations) without knowing the reading frame, or any cor-
responding amino acid translation, in advance. MACSE 
recognizes the reading frame and produces the alignment in 
the FASTA format. Any possible frameshifts and stop codons 
are detected and the nucleotides are aligned in a way that any 
alignment gaps are more likely inserted as a multiplication of 
three. This results in higher quality of the codon-specifi c align-
ment for coding regions than could be achieved using align-
ments tools that are not codon aware. 

 Our experience has shown that it is important to adjust the 
penalty parameters of MACSE depending on the type of data 
you are using. Transcriptome data (such as assembled RNASeq 
data) can be aligned with the default parameters since the 
occurrence of the stop codon in the middle of the gene is less 
likely than the sequencing error. While exon sequences 
extracted from a genome may contain single base “overhangs,” 
so should be given a higher penalty for frameshifts. We advise 
caution, since inappropriately tuned parameters may result in 
alignment errors that will affect downstream results. 

 The MACSE java application is invoked like so: 
  java -jar macse_v0.8b2.jar -i   your_ortho-
logs_fi le.fa   -o   your_output_prefi x    

   4.    A full discussion of maximum likelihood, likelihood values, 
and likelihood ratio tests in molecular evolution is beyond the 
scope of this chapter. For the purposes of using PAML, the 
important principles are that  CODEML  and other programs in 
the PAML package use  maximum likelihood  to try to fi nd 
parameters that best fi t the observed data to the model you 
have specifi ed (e.g.: model M0). The  likelihood function  is a 
function of the parameters of the model: the  likelihood  of a set 
of parameter values given the observed data is the probability 
of observing the data given the parameter values. It is not nec-
essary to fully understand the theory of maximum likelihood 
to use PAML effectively. The main point to appreciate is that 
the log likelihood (lnL) is a probability of data fi tting the 
model. The aim with testing various models is to fi nd a model 
that better fi ts the data. The  likelihood ratio test  is used to 
determine if one data-model fi t is signifi cantly better than 
another. We recommend excellent Wikipedia articles as a short 
primer on these topics and [ 42 ,  61 ] for further reading.   

Daniel C. Jeffares et al.



87

   5.    This can be achieved, for example, using the function pchisq in 
R. Only for the branch test the LRT follows the  χ  2  (chi-square) 
distribution. For the site test or the branch site test the LRT 
does not follow a  χ  2  distribution, but using this distribution in 
both cases will make your  p -values conservative [ 32 ].   

   6.    A tutorial about using CODEML to calculate  ω  for 3,261 ortho-
logs from six Plasmodium species is given as supplementary fi le 
worked_example.pdf. The data used are as described in [ 57 ]. All 
the fi les required to follow through this example are provided 
in the supplementary fi le worked_example_fi les.zip. All supple-
mentary data will be available on    http://www.danieljeffares.
com/data    .                      
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